江苏银行依托大模型,创新打造数字金融新场景
日期:06-07
发展数字经济和数字金融已成为推动银行业数字化转型、拥抱新一轮科技革命的重要途径。江苏银行主动融入数字经济发展新浪潮,持续开展新技术研究,跟进大语言模型发展趋势,立足本行打造定制化垂直模型,增强应用场景适配性,为数字金融智慧化提供基础动能。
近期,该行“智慧小苏”大语言模型平台再添新场景,上线“智能文档助手”提速企业授信,搭建“移动智库”提升用户体验,为客户提供更加智能、高效、便捷的金融服务。
江苏银行基于大模型“多模态”理念,准确识别用户意图,自动运用音频分析、外部图像处理等功能,实现扫描件、语音、电子表格和文本等多种类型素材的自动化提取,打通多类信息载体间的壁垒。该行推出“智能文档助手”,自动归纳企业经营状况,结合实时舆情信息,实现授信调查报告的智能生成,工作效率提升42%,预计每年节省客户经理1.5万工时。
目前,大语言模型赋能的“智能文档助手”已在移动端、PC端双渠道落地,江苏银行客户经理可随时随地开展尽调工作,企业授信效率大幅提升。
江苏银行以数据驱动为核心,探索运用大语言模型赋能内部员工,优化管理流程,提升工作效率。基于大语言模型的“移动智库”可智能高效整合并提炼内外部规章制度、产品政策、操作流程等,成为决策的智能中枢。
通过引入最新的“检索增强生成”技术,“移动智库”的智能化水平显著提升。在检索阶段,利用强大的文档理解和索引机制,能够从海量的数据中快速提取相关的信息片段;在生成阶段,这些片段被智能地整合并生成连贯、准确的回答,提升信息的可用性和价值。
为满足行内外场景高并发、快响应的需求,“智慧小苏”大语言模型服务平台构建了基础设施层、工具层、模型层、服务层与应用层五层架构。基础设施层依托高算力网络与容器云,实现了模型资源的动态分配,具备各类国产化数据库的管理能力,做到高度自主可控与定制化;工具层引入批处理和算子融合等模型加速技术,有效减少对模型参数矩阵的扫描次数,降低内存带宽消耗。
江苏银行相关业务负责人表示,该行将紧跟时代步伐,继续锐意进取、创新求变,以高质量数字金融服务为数字经济发展注入新动能。
江寅轩